

VI Semester B.Sc. Examination, May 2016 (NS) (2013-14 and Onwards) PHYSICS – VII

Atomic and Molecular Physics, Nuclear Physics and Material Science

Time: 3 Hours Max. Marks: 70

Instruction: Answerfive questions from each Part.

PART - A

PART – A				
	Ar	ารพ	erany five of the following questions. Each question carries eight marks.	(5×8=40)
	1.		What are the limitations of Bohr's model of atom? Write a note on spatial quantisation and spin of electron.	(2+6)
	2.	a) b)	Distinguish between normal and anomalous Zeeman effect. Explain Debye's quantum theory of normal Zeeman effect.	(2+6)
	3.	a) b)	Distinguish between Rayleigh scattering and Raman scattering. Explain quantum theory of Raman effect and obtain the expression for Rashift.	man (2+6)
	4.	a) b)	State the assumptions of theory of Rutherford's alpha ray scattering. Obtain the relation between the impact parameter and angle of scatterin alpha ray scattering.	g in (2+6)
	5.		Derive an expression for the Q value of alpha decay. Write a note on Geiger-Nuttal law.	(5+3)
	6.	a) b)	With the help of diagram, explain the construction and working of a cyclo Arrive at the expression for maximum energy of emerging particle.	tron. (5+3)
	7.	a) b)	What are top-down and bottom-up methods of synthesis of nanomaterial what are zero, one and two dimensional nanosystems? Give one exame each.	nls ? nple (2+6)
	8.	a) b)	Explain different types of thermotropic liquid crystals. Mention any two applications of liquid crystals.	(6+2)
				PTO

PART-B

Solve any five of the following problems. Each problem carries four marks. (5×4=20)

- 9. Find the value of Bohr magneton. Given, Planck's constant, $h = 6.625 \times 10^{-34} Js$, mass of electron $m_e = 9.1 \times 10^{-31} kg$, charge on the electron $e = 1.602 \times 10^{-19} C$.
- 10. In a Stern-Gerlach experiment silver atoms traverse a distance of 0.1 m through a non-uniform magnetic field of gradient 60 Tm $^{-1}$. If the separation between two (mass of silver atom = 1.79×10^{-25} kg, Bohr magneton = 9.28×10^{-24} JT $^{-1}$).
- 11. The force constant of CO molecule is $187 \, \text{Nm}^{-1}$. Find the frequency of vibration of CO molecule and spacing between the vibrational levels. (The reduced mass of CO molecule is $1.145 \times 10^{-26} \, \text{kg}$).
- 12. An α -particle of energy 10 MeV is moving towards gold nucleus (Z = 79). Calculate the distance of closest approach.
- 13. Potassium-40 decays into calcium by beta emission. Find the Q value of reaction. Given, mass of potassium atom is 39.96399 U, mass of calcium atom is 39.96259 U.
- 14. The Q value of reaction $_5B^{10}$ (n $_3Li^7$ is 2.7935 MeV. Calculate Threshold energy. Given mass of $_5B^{10}$ atom is 10.012394 U, and mass of neutron is 1.008665 U.
- 15. If a sodium-chloride crystal is subjected to an electric field of 1000 Vm $^{-1}$ and resulting polarization is 4.3×10^{-8} cm $^{-2}$. Calculate the dielectric constant.
- 16. The electronic polarization of the atom is 3.28×10^{-40} Fm². If the sulphur solid has cubical symmetry, calculate its dielectric constant. (Given N = 3.914×10^{28} m⁻³).

PART-C

Answerany five of the following questions. Each question carries two marks. (5×2=10)

- 17. a) The path of an electron is a rosette according to Sommerfield Model. Explain.
 - b) The alkali metals have hydrogen-like spectra. Explain.
 - c) Do the electrons of target atom affect the scattering of alpha particles ? Explain.
 - d) Can there be a transition from E₃ to E₁ of rotational energy levels? Explain.
 - e) Is alpha ray spectrum discrete or continuous? Explain.
 - f) Can G-M counter detect neutrons? Explain.
 - g) Do polar dielectric material posses dipole moment in absence of external electric field ? Explain.
 - h) Does the colour of liquid crystals change with temperature? Explain.